
Formal Consistency Verification of Deliberative
Agents with respect to Communication

Protocols

Jaime Ramirez and AngClica de Antonio

Technical University of Madrid
Madrid, Spain

{jramirez, angelica}cpfi.uprn. es
http://decoroso.ls.fi.upm.es

Abstract. The aim of this paper is to show a method that is able to
detect inconsistencies in the reasoning carried out by a deliberative agent.
The agent is supposed to be provided with a hybrid Knowledge Base
expressed in a language called CCR-2, based on production rules and
hierarchies of frames, which permits the representation of non-monotonic
reasoning, uncertain reasoning and arithmetic constraints in the rules.
The method can give a specification of the scenarios in which the agent
would deduce an inconsistency. We define a scenario to be a description
of the initial agent’s state (in the agent life cycle), a deductive tree of rule
firings, and a partially ordered set of messages and/or stimuli that the
agent must receive from other agents and/or the environment. Moreover,
the method will make sure that the scenarios will be vaIid w.r.t. the
communication protocols in which the agent is involved.

1 Introduction

The purpose of this paper is to show a method to verify the consistency of the
reasoning that a deliberative agent can perform. We assume the agent to com-
prise a knowledge base (KB) expressed in a knowledge representation formalism
called CCR-2.

The CCR-2 formalism is valid to represent hybrid KBs that combine pro-
duction rules with hierarchies of frames. This formalism allows us to represent
non-monotonic reasoning, uncertain reasoning, and arithmetic constraints in the
rules.

We assume that the agent whose reasoning is checked needs to carry out a
reasoning process for deciding its next action according to its goals. The agent’s
knowledge can fall into three different categories: acquired knowledge, innate
knowledge or deduced knowledge. The acquired knowledge is made up of ac-
quired facts, that is, information coming from its perception or requested to
other agents; the innate knowledge is made up of knowledge that the agent
knows since the beginning of its life; and the deduced knowledge is formed by
the facts deduced by firing rules. It is clear that, as the reasoning process evolves,

the agent may obtain contradictory acquired facts from different sources w.r.t.
previously acquired facts. In this case, the new knowledge would replace the
obsolete knowledge. However, the agent should not be allowed to deduce a set
of contradictory facts from the acquired facts and the innate facts.

The proposed method finds scenarios in which the agent would deduce an
inconsistency. A scenario consists of a description of the initial agent’s state (in
the agent life cycle), a deductive tree of rule firings, and a partidy ordered set of
messages and/or stimuli (expressed as schemas) that the agent must receive from
other sgents and/or the environment to achieve the execution of the deductive
tree. A scenario permits the execution of a deductive tree of rule firings that will
deduce a set of semantically contradictory facts. We mume the agent’s state
to be a set of innate facts, acquired facts (from the sources mentioned above)
and/or deduced facts, that is, it is a Fact Base (FB). Basically, the partially
ordered set of messages and/or stimuli schemas, included as part of a scenario,
will represent precedence dependencies between the messages/stimuli required
in the reasoning. This set will be checked w.r.t. the communication protocols in
which the verified agent is involved, so as to warrant the precedence dependencies
can be satisfied by the specification of the communication protocols.

Some methods or tools designed to detect inconsistencies in a Knowledge
Base System (KBS) (mostly rule-based systems) build a model of the KBS
(Graph, Petri Net, etc.), and execute the model for each valid input, in order to
identify possible inconsistencies during the reasoning process. This approach in
many cases turns to be computationally very costly. Thus, we decided to adopt
another approach in which the starting point is one of the inconsistencies that
might be possibly deduced by the verified KBS, and the goal is to compute a d e
scription of the scenarios in which the KBS included in the agent would deduce
that inconsistency. This approach takes some ideas from the ATMS designed by
de Kleer (I), since it uses the concept of label as a way to represent a description
of a set of FBs. Other methods for verifying rule-based systems that follow a
similar approach were proposed in (2) (3) (4) (5) (6) (7) (8).

Section 2 explains some points related to the agent’s KB and inconsistencies
that are verified by this method, and the hypotheses that will be assumed in the
operation of the method. In section 3 it is described how this method specifies
the way in which an agent deduces an inconsistency, if possible. In section 4, the
procedure for detecting an inconsistency is explained, and in section 5, a small
example of application is shown. We end with some conclusions about our work,
and some future works that will be derived from this work.

2 Scope

Our method receives as inputs a CCR-2 KB (the agent’s KB), a classification of
the possible facts that the agent can manage, an Integrity Constraint (IC) to be
checked, and a set of communication protocol specifications.

CCR-2 (also called GKE) (9) supports the represent.at,i.ion of production rules
and a high number of object types in the FB: frame classes and instances, re-

lationships, propositions, attribute values and attribute identifiers. A rule’s an-
tecedent in CCR-2 is a Disjunctive Normal Form (DNF) formula made up of
literals. A lzteral is an atom, a negated atom or a linear arithmetic inequation
over attribute values and/or certainty factors. An atom states something about
some object in the FB. In CCR-2 a rule’s consequent contains a list of actions
that can modify the state of an object, create or destroy objects while execut-
ing the KB system included in the agent. This last characteristic allows us to
represent some types of non monotonic reasoning. As it is possible to declare
variables as relationships and propositions in the rules, the antecedent of a rule
is a second order logic formula. Nevertheless, the actions of the rules can not
change the type of a relationship or a proposition, therefore CCR-2 supports a
limited representation of the second order logic. Moreover, uncertain reasoning
can be represented in CCR-2 by associating certainty factors to attribute values,
to tuples in a relationship or to propositions.

The CCR-2 KBs can use two kinds of management of the negation: closed
world assumption (CWA) or 3-valued logic. The kind of negation management
determines: when a fact can be considered true or false; what is the effect of the
actions; how the facts and actions can be chained during the KBS execution; and
which pairs of actions are contradictory. For instance, in the %valued logic there
are three truth values: true, false and unknown; while a fact will be false if its
negation appears in the FB, a fact will be unknown if neither it nor its negation
appear in the FB; moreover, the action Add(-p) deduces the fact y p , and the
pair of actions A d d (p) and A d d (7 p) are contradictory. It must be highlighted
that the action Add(-p) cannot be employed under CWA.

The rules are assumed to execute with forward chaining or backward chaining
under conflict set resolution. The rules are structured in groups whose activation
or inhibition is controlled by metarules. When a rule is fired, we assume the
sequential execution of all the actions belonging to the consequent of the rule.

We assume that two kinds of facts can appear during the agent’s execution:
statac facts and dynamic facts. A static fact is a fact whose truth value changes
neither from true to false nor from false to true during the reasoning process,
whereas the truth value of a dynamic fact actually may change those ways. In
this sense, acquired facts and deduced facts will be dynamic facts. Moreover,
facts representing innate knowledge are assumed to be static. The method needs
to know both whether a literal is static or dynamic, and whether a literal is
acquired, innate or deduced, so a classification must be provided.

2.1 Defining Inconsistencies: Integrity Constraints

An IC defines a consistency criterion over input data, output data or input and
output data. The IC form is:

3x1 E T1322 E T2...3~n E T n 3 () ~ + 1 E Tn+13()2n+2 E Tn+n ... 3rn+rn E Tn+m
A * l

where A is a second order logic formula in DNF that includes conditions over
whatever types of CCR-2 objects. Each literal in A has an associated scope,

which specifies whether the literal is related to input data (acquired literal or
innate literal), or output data (deducible literal). For the variables in A, two
kinds of quanti5ers can be employed: the existential quantifier (with the classical
meaning) and the restricted existential quantifier (denoted as 302).

An IC 3x E T(A(z) s I) is violated if at least one object in the class T
that is included in the FB satisfies the conditions imposed over the variable
z in the formula A.
An IC 3()z E T (A (z) + I) is violated if every object in the class T that
is included in the FB satisfies the conditions imposed over the variable x
in the formula A and only those conditions.

This semantics for the restricted existential quantifier permits the detection
of knowledge gaps. Lets see an example of an IC with a restricted existential
quantifier:

302 E PATIENT
IsJZl(z, FLU), (z.Fewer = high) + I

Clearly, having a high fever is not enough to deduce that a patient has flu.
So, if a KBS can violate this IC, it is likely that there is a knowledge gap in the
KB, that is, the KBS needs more rules.

2.2

Nowadays, different notations can be employed to specify communication proto-
cols: AUML interaction diagrams’ or state machines as in (10). For the purpose
of the proposed method, state machines are more suitable as the checking of
the scenarios w.r.t. the protocols must be automated. Hence, a state machine
view for the verified agent must also be supplied as an input to our method.
Each state transition of the state machine owns a label that describes how the
messages/stimuli that h e the transition are. This label is expressed in terms of
message/stimuIus schemas.

In addition to the state m a h e , a correspondence between message/stimulus
schemas and acquired literals must be supplied. If a message/stimdus schema
corresponds to a set of acquired literals {Z,}t=l, ,,,, any message/stimdus that
matches that schema contains a model for the formula 3z1*2-..3zn(A,=1, ~ 4)
where z1,z2, ..., z, are all the free variables in ,~ I , . This latter formula
can be also viewed as a query.

Specifying Interaction with the Environment and other Agents

2.3 Assu-ed NG;;-MCI.,&~~C Reasoning

CCR-2 rules can introduce new facts in the agent’s state, but they can also delete
already existing facts. This provides the agent’s designer with the capability of
building agents with non-monotonic reasoning. So, we could find production

http://www.auml.org/

rules of the form p -+ Del(p) under CWA. This kind ofrules (when p is assumed
to be provided) are not admissible in a RB from the point of view of classical
logic or default logic (ll), since they are logical inconsistencies. However, if we
examine these rules from the point of view of temporal logic (la), and we rewrite
them as -y atnes t p (where the intended meaning for the operator atnext is: y p
holds at the next time point that p holds), then these rules should be perfectly
admissible in a RB. From our perspective, production rules should be interpreted
as rules of the form y p atnext p . If we admit rules of the form -p atnext p , we
situate ourselves quite far from the concept of inconsistency as defined in other
works, so we are going to clarify the meaning of inconsistency in this work:

A deductive tree T that deduces a pair of facts F and F' is consistent iff

(a) T does not contain a set of contradictory static facts, or
(b) the deductive subtree of T that deduces F does not deduce F' in the

end, and vice versa.

This definition implies that the deductive subtree that deduces a fact F must
not deny the other fact F' that must hold at the same time than F , and vice
versa.
When the agent executes a reasoning process, a deductive tree is evaluated and a
sequence of rules is fired. A deductive tree defines a partial order for rule firings,
so many sequences correspond to a certain deductive tree. The definition showed
above is not more than a structural property to be fulfilled by the deductive trees
built by the agent that we want to verify using our method. We will call this
property Tree-Consistency(dt) where dt is a deductive tree that is a tree of rule
firings defined recursively by means of the constructor tree and the constant
N I L T R E E (empty tree). As our method will simulate the agent's reasoning,
it will discard any deductive process that implies the creation of an invalid
deductive tree. Next, we will define this property formally:

Tree-Consistency(dt) E Tree_ConsistencyAuzl(Boun~ary(dt))
A Tree-CasistencyAux~2(dt, 0)

Tree-ConsistencyAuxl (B) G

Tree-ConsistencyAux2(dt, scope) = (dt = NIL_TREE)V
~ (3 2 s E INCONSISTENT-SETS is c UrEB Assumed_Fads(r))

3r3u1,3u~...3Un(dt = tree(r, (ul, az, ..., an)),
scope-in-rule = scope \ Deduced-Fuds(r),
~ ((3 f E scope-inrule, 3f' E Assumed_Facts(r), (f = 7f'))V
(3f E Deduced>ads(r), 3f' E scope, (f = yf'))),
Tree_ConsistencyAux2(a~, scope-inrule U Assumedyacts(r)),
Tree-ConsistencyAux2(u~, scopein-rule U Assumed-Facts(r)) ,

T r e e ~ C ~ s i s t e n c y A u s 2 (u n , scope-in-rule U AssumedF'ads(r)))
.......................................

where INCONSISTENT-SETS is the set of the different inconsistencies
to be considered, the function Boundury(dt) returns the set of rule firings

3

that are leaves of the tree dt, the function Dedzlced-Fads(r) returns the f x t s
deduced by the rule firing T and the function Assumed-Fads(r) returns the
static facts that must hold to permit the rule firing r.

In the dehition above, the property Tree-ConsistencyAuxl specifies the
condition (1) in the definition of consistent deductive tree above, and the prop-
erty Tree_ConsistenqAw2 specifies the condition (2).

Figure 1: Example of an invalid deductive tree

Lets see an example of an inconsistent RB. Lets take the production rules R1:
r, s 3 Dellp); R2: t -+ Add@); R3: -p -+ Add(q) under CWA. In the figure 1
we can see the deductive tree for the conjunction p A q that is supposed to be
the antecedent of another rule. The facts p and q are deducible and all the other
facts are non-deducible. Obviously (see rule R3), in order to deduce q, 7 p must
be deduced beforehand, and after having deduced ~p it is not possible to deduce
p . This example deserves an additional comment. If we awme that the rules are
executed with forward chaining and we fire them in the sequence [Rl, R3, R2]
then the facts p and q will be both true in the final FB. However, if the rules
are fired in the following sequence [R2, R1, R3] then the facts -p and q will be
present in the find FB. With the first sequence, the fact q was deduced first, and
then the fact p ; with the second sequence the facts were deduced the other way
round. Our definition of inconsistency includes situations like this one, when the
truth values of the goal facts depend on the order in which they are deduced.

Lets see an example of a RB that is consistent according to our definition,
but inconsistent according to other dehitions. h t s take the production rules
R1: n,u -+ Add(q); R2: s, -q -+ Add(q); R3: q,m,t + DeZ(p); R 4 u -+ Del(q)
under CWA. In the figure 2 we can see the deductive tree for the conjunction
-p A q that is suppased to be the antecedent of another rule. We want to deduce
the -p and q, and all the other facts are non-deciuci'ul. Vi% c z see thzt there
are six different sequences of rules that correspond to the deductive tree of the
figure 2. However, among them, only three sequences are feasible ([R4, R2, R1,
R3], [Rl, R3, R4, R2) and [Rl, R4, R2, R3]), and all of these three sequences
deduce the same truth values for p and q.

R3(q. m, t)

-P A cl

Figure 2: Example of a valid deductive tree

According to the above definition of inconsistency, it is clear that MECORI
will not be able to verify some non-monotonic KBS. In particular, all the KBS
whose deductive trees do not follow the consistency definition exposed above,
for instance, the planners of STRIPS type.

3 Requirements for Getting an Inconsistency: Scenario

The aim of the proposed method, as it was explained in the section 1, will be
to compute scenarios for an inconsistency described by an IC. Each scenario
is formed by a description of the initial agent’s state, a deductive tree of rule
firings, and a partially ordered set of messages and/or stimuli. The proposed
method will construct an object called subcontext to specify how the initial
agent’s state must be and which deductive tree must be executed in order to
yield an inconsistency. There may be different initial agent’s states and different
deductive trees that lead to the same inconsistency. All the different ways to
violate a certain IC will be specified by means of an object called contezt. Thus,
a context will be composed of n subcontexts. In turn, a subcontext is defined as
a pair (envaronment, deductzve tree) where an environment is made up of a set
of metaobjects, and a deductive tree is a tree of rule firings.

A metaobject describes the characteristics that one object which can be
present in the agent’s state should have. For each type of CCR-2 object there will
be a different type of metaobject: metaproposition, metaframe, metarelationship,
metaattribute and metaid-attribute. In order to describe a CCR-2 object, a
metaobject must include a set of constraints on the characteristics of the CCR-2
object. Some CCR-2 objects may include references to other CCR-2 objects (for
example, a frame instance can have references to attributes and a relationship can
include tuples of references to frame instances), so the counterpart metaobjects
will contain references to other metaobjects. In the table below, the attributes of
each type of metaobject are shown. The value of these attributes will represent
the constraints described by each metaobject.

Relationship

Proposition

b&,
Figure 3: Environment

Metarelationship (identifier, isiestrided-exist,
type, tuples, conditionsforzach-tuple)

Metaproposition (identifier, isxestricted-exkt,
type, truth-value, conditions)

3.1 Temporal labels and constraints

A goal h is a pair (1 , A) where 1 is a iiterd and A is I set of metaobjects associated
with the object names and variables in I, that specifies the FBs in which the lit-

era1 1 is satisfied. Moreover, a goal (I , A) is static/dynamic/deducible/acquired/innate
iff the literal 1 is static/dynamic/deducible/acquired/innate.

For the purpose of executing a deductive tree, it may be required that a
dynamic acquired fact f holds in a rule, and later on, that the fact - j holds
in another rule. This situation may yield an apparently contradictory environ-
ment. To determine if it is a real contradiction, temporal labels will be associated
with some constraints included in the goals (1, A) and (Z’, A’) that entail f and
-f respectively, to represent that these constraints must be satisfied in differ-
ent rule firings (or moments). Each temporal label associated with a constraint
identifies the rule firing where the constraint must be satisfied, and specifies
that the constraint comes from a dynamic acquired fact. From these labels, the
method will specify, as part of the resulting scenario, that a message/stimulus
that matches schema M and allows literal 1 to hold must be received before
a message/stimulus that matches schema M’ and allows literal 1’ to hold is
received, formally M < MI. Temporal constraints, like the one stated in the
previous sentence, will define a partially ordered set of messages and/or stimuli
schemas, in which the relationship < expresses temporal precedence.

For each static acquired literal included in the KB, it will be required to
produce a temporal constraint to establish that the message/stimulus (according
to a schema) allowing the static acquired literal to hold must be received before
the end of the deductive process. Consequently, to permit the proposed method
to obtain the proper temporal constraints later, some temporal labels must also
be associated with the constraints derived from static acquired literals. Besides,
these labels must specify that the constraints have been obtained from a static
acquired fact.

Moreover, the method has to generate temporal constraints to establish that
some messages/stimuli allowing static acquired literals to hold must be received
before the message/stimulus that allows a certain dynamic acquired literal to
hold. Lets see the conditions in which these temporal constraints must be gen-
erated. Let (Rl, R2, ..., R N) be the sequence of rules that are fired as a result
of evaluating a deductive tree according to the control mechanisms. Let Ri s.t.
1 < i < N be a rule whose antecedent requires the dynamic acquired literal Ld
to hold, and let M be a message/stimulus schema that entails Ld; let Rj s.t.
i < j < N be a rule whose antecedent requires the dynamic acquired literal
-Ld to hold, and let M’ be a message/stimulus schema that entails 1Ld. Then,
it is clear that any message/stimulus schema M1 that entails a static acquired
literal Ls belonging to the antecedent of a rule Rk s.t. i < IC < j must satisfy
M1 < M’. The rationale for generating these temporal constraints will become
clearer in the section 5 when an example is shown.

4 Description of the method

Computing the scenarios associated with an IC requires three steps:

1. Computing the context associated with the IC without taking into account
the control mechanisms, and considering all the rules to form a unique group.

2. Computing the scenarios from the context associated with the IC and the

3. Discarding invalid scenarios w.r.t. the communication protocols.
control mechanisms.

4.1

Basically, the &st step can be divided into two phases. In the first phase, the
AND/OR decision tree associated with the IC is expanded following a backward
chaining simulation of the real rule firings. The leaves of this tree are rules that
only contain acquired facts in their antecedents. At this point, the difFerence be-
tween a deductive tree and a AND/OR decision tree should be explained. While
a deductive tree can be viewed as one way and only one way for achieving a cer-
tain goal (that is, for deducing a bound formula or for firiig a rule), an AND/OR
decision tree comprises one or more deductive trees, therefore it specifies one or
more ways to achieve a certain goal. During the first phase, metaobjects are built
and propagated from a rule to another one. In this propagation, some constraints
are added to the metaobjects due to the rule literals and the declaration part
of the rules/IC, and some constraints are removed from the metaobjects due to
the rule actions. In addition to the metaobjects, a set of assumed propositions
and tuples (SAPT) are propagated and updated.

In the second phase, the AND/OR decision tree is contracted by means of
context operations, and metaobjects associated with non-deducible facts and
conditions associated with inequations are inserted in the subcontexts. Lets d+
fine the the following contexts operations: creation of a context, concatenation
of a pair of contexts and combination of a list of contexts.

Contexts Operation
a) Creation: a context with an unique subcontext is created from a non-deducible
goal g = (1, A) and a rule r : C(g, r) = { (E , N I L T R E E) } where the environ-
ment E comprises all the metaobjects included in g. The rule r must be a rule
that comprises the literal 1 in its antecedent. If the literal 1 is not innate (so it
is related to a message/stimulus), some constraints of the metaobjects must be
labelled with a temporal label indicating that these constraints must be satisfied
at least in the firing of the rule r; in particular, constraints that state the truth
d u e of a metaproposition, and constraints that state the truth value of a tuple
in a metarelationship. The literal I will hold in any agent’s state that satisfies
all the constraints specified in E.
b) Concatenation of a pair of contexts: let C1 and CZ be a pair of contexts and
Conc(Cl, C2) be the context resulting from the concatenation, then: Cm(C1, C2)
= c r u c2.
c) Combination of a list of contexts: Let Cl,C2, ..., C,, be ths ’kt ofco~teYts, and
Conab(Cl, C2, ..., Cn) be the context resulting from the combination. The form

Computing the Context associated with the IC

ofthisredtkgcontextk: Cmb(C1,C2, ..., Cn) ={(EkiUEk2 ... UEkn,DTkl*
DTk2 ... * DTh) s.t. (E,, DTi’l) E c,}

c.1) Union of environments (E, ii E3): this operztion consists of the union of
the sets of metaobjects Ei and Ej. After the union of two sets, it is necessary

to check whether any pair of metaobjects can be merged. A pair of metaob-
jects will be merged if they contain a pair of constraints c1 and c2 respectively
such that e1 and e2 specify the same name. As a result of this fusion, the
new metaobject could be invalid if it contains contradictory constraints not
coming from dynamic acquired facts. In this case, the resulting environment
will be invalid, and it will be discarded. Finally, if the resulting environment
represents an invalid initial agent state, then this environment will also be
discarded. Moreover, after the union of two environments, it is also necessary
to check whether the resulting set of conditions can be satisfied or, in others
words, whether the resulting set of conditions is feasible.
c.2) Combznation of deductzve trees (DT, * DT,): let DT, and DT, be deduc-
tive trees, then DT, * DT, is the deductive tree that results from constructing
a new tree whose root node represents an empty rule firing, and whose two
subtrees are DT, and DT,.
Basically, the creation operation is employed to work out the context associ-

ated with a non-deducible goal; the combination operation is employed to work
out the context associated with a conjunction of literals from the contexts as-
sociated with the literals; and the concatenation operation is employed to work
out the context associated with a disjunction from the contexts associated with
the formulas involved in the disjunction.

These two phases are explained in detail in (13). However, there are some
differences between the current step and the process explained in (13). These
differences are related mainly to the context operations and the treatment of
acquired facts and deductive trees. In (13) is explained a method for verifying an
isolated KB System, so acquired facts are not considered, and the KB System is
assumed to deal only with innate knowledge (external facts in (13)), and deduced
knowledge.

4.2 Computing the Scenarios

In the second step of the method, a different scenario is derived from each sub-
context in the context associated with the IC by adding a partially ordered set
of messages and/or stimuli to the subcontext. In this step, some subcontexts
may be discarded if they are impossible w.r.t. the control mechanisms. The par-
tial order on the message/stimulus schemas reflects the temporal constraints
derived from the control mechanisms and the deductive tree. These temporal
constraints are generated as it was explained in the section 3. It may happen
that more than one message/stimulus schema entails the same literal, so this
aspect must be taken into account in building the temporal constraints to be
added to the partially ordered set.

4.3 Discarding invalid Scenarios w.r.t. the Communication
Protocols

In the previous steps, some scenarios have been computed for an IC. However,
it may happen that some scenario obtained in the previous step describes im-

possible sequences of messages or stimuli w.r.t. the communication protocols. In
order to check this, at least one path that satisfies all the temporal constraints
must be found in the state machine. The first state of this path must be the
state in which the agent begins its reasoning process.

5 Example of application

In this section we will show how the method can be applied to a small example.
We will assume a deliberative agent that executes the sequence of rules that
appears in the figure 4. For the sake of clarity and conciseness, the rules and the
IC of this example are not represented in the CCR-2 format, and all the facts
are propositional. In this example, the facts q and ~q are dynamic acquired facts
entailed by the messages M and M' respectively, whereas the fact -v- is a static
acquired fact entailed by the stimulus 5'. Moreover, the fact s belongs to the
agent's innate knowledge, and the facts t and p are deducible.

M S
I I
I I
I 1 *

-r =Add(p)
I

M
/

I + rr'
R2: p, -q =Add(t)

1
$

IC: s(l), t (0) 31
I

Figure 4: Example with an IC and two rules

The method begins expanding the AND/OR decision tree. First of all, it i s
necessary to bind each variable of the IC and each referenced object to a metaob-
ject. Some constraints are derived from each IC literal, and they are added to
the metaobjects (in this case, metapropositions). The resulting metapropositions
are:

PROP1 = (id + s, truth-value -+ true)
PROP2 = (id -t t , truth-value -+ true)

Li adZi,tim tc the m&mbjects. the SAPT is created. This set contains the
names of the propositions included in the IC and the tupies of reiatiouhipa
whose names appear in the IC that are not associated with dynamic acquired
facts. So, initially, SAPT = { s , t } , because neither the fact s nor the fact t are
dpzrnic acquired facts. The aim of the SAPT is to warrant the consistency of
the non-monotonic reasoning in the sense explamed in the StiGIi 2, concrete!y
the second point of the consistency definition in section 2. The SAPT plays the

role of the scope parameter in the definition of the Tree-Consistency property.
Unluckily, the metaobjects alone cannot warrant the consistency in all the cases.
For example, if the SAPT is not used in the example of the section 2 (see figure
I), the inconsistency would not be detected in the simulation of the agent's
execution, and that deductive tree would not be discarded.

Obtaining the context of an IC implies obtaining the context associated with
each literal included in the IC. If it corresponds to a non-deducible goal, its con-
text is created (see Creation Operation in section 4.1). In order to compute the
context of a deducible goal, the method has to generate the contexts associated
with all the'rules that deduce the goal (conflict set), and then it has to concate-
nate them (in the contraction phase). To decide whether a rule deduces a goal,
it is needed to check whether there exists any action in the rule that is unifiable
with the goal. In the example of the figure 4, the IC comprises an innate literal
(input literal) and a deducible literal (output literal). So, the method finds a
rule (R2) to deduce the deducible literal.

In general, a CCR-2 rule premise contains a list of conjunctions joined by
disjunction operators. Hence, to compute the context of a rule it is needed to
calculate the context of each conjunction, and then they have to be concatenated
(in the contraction phase). In order to compute the context of a conjunction, it
is required to compute the context of each literal included in the conjunction. A
pre-processing similar to that of an IC is performed over each conjunction before
computing the contexts of the included literals. As a result of this, new metaob-
jects and conditions appear and some constraints are added to the metaobjects.
In the rule R2, the metapropositions PROP3(p) and PROPA(-q) are created.

The rule R2 contains only one conjunction with two literals p and yq. While
p is a deducible fact, y q is a dynamic acquired fact. In this example, the rule
R1 can be employed to deduce the fact p. In the rule R1, the metapropositions
PROPS(q) and PROPG(-T) are created.

The SAPT propagated from the IC is updated while processing the rule R2,
so now SAPT = {s ,p} , since t is deleted by the action of the rule R1, and
is a dynamic acquired fact. If the antecedent of the rule R2 had comprised the
fact -s, a conflict would have been detected when updating the SAPT, and the
rule R2 would have been discarded. Finally, the SAPT in the rule Rl is SAPT

Once the AND/OR decision tree has been expanded completely, the tree is
contracted by using {he context operations, and the constraints generated for
the non-deducible goals (inside the metaobjects) are propagated forward from
the leaves of the AND/OR decision tree to the IC. Thus, all these constraints
are collected in the context associated with the IC. In the example, the contexts
associated with the non-deducible facts s, q, -rr and T q are created, and next,
the necessary combination operations are carried out until the context associated
with the IC is computed. Every time a context is obtained from a combination
operation in a rule R, this rule R is added to each deductive tree of the context
as the new root node.

= { s } .

It is worth mentioning that while computing Comb(C(p), C(1q)) in the rule
R2, an apparent conflict is detected between the metapropositions PROP4 and
PROP5, as they require different truth values for the same proposition q. How-
ever, there is no contradiction, since the facts q and --q are dynamic acquired
facts, that is, the contradictory facts may hold in merent moments. Hence, these
metapropositions are merged, and the new metaproposition PROP7 is yielded:

PROP7 = (id -+ q, truth-value + (true(R1, dynamic),false(R2, dynamic)})

After applying the first step of the method, the resulting context associated
with the IC is: C(IC)= {({PROPl, PROPG, PROPq, tree(R1, [tree(RZ,nil)])
)}, where these metapropositions are defined as:

PROP7 = (id -+ q,truth-value + (trw(R1, dynamic), false(R2, dynamic)})
PROP6 = (id -+ r, truth-value + false(R1, static))
PROP1 = (id -+ s,truth-value -+ true)

Next, in the second step, according to the control mechanism, it is determined
that this deductive tree is evaluated by firing the sequence of rules [Rl,R2].
Taking this into account, the following temporal constraints are derived from
the metapropositions: M < M', because the message M must be received before
the message M', in order to allow the fact q to hold first, and then to allow the
fact -q to hold later; and S < M', because the stimulus S must be received
before the message M', since, otherwise, the rule R1 will not be able to be fired
before the rule R2. Thus, the partially ordered set is { M < M',S < M'}, and
the scenario is (C(IC), {M < M', S < M'})

Finally, in the third step, the scenario is checked w.r.t. the agent's state
machine, which describes the agent behaviour. We can see a fragment of this
state machine in the figure 5 . The reasoning process is supposed to begin in the
state go. It is clear that there is a path that satisfies all the temporal constraints
imposed in the scenario, so the scenario is consistent with the state machine.

Send: R 1 n @=%@=@
I I 1Recu:S I

Figure 5: Fragment of the Agent's State Machine

6 Conclusion

In this paper, a formal method to verify the consistency of the reasoning process
of a deliberative aient w.r.t. communication protocols has been presented. TO
the best of our knowledge, there is no other method or tool that also addresses
this kind of verification. It is also noteworthy that the agent to be verified encom-
passes a hybrid KB that permits the representation of non-monotonic reasoning
and arithmetic constraints.

7 Future Work

Mainly, there are two aspects of the proposed method that we want to improve:
first, the validation of the deductive tree w.r.t. control mechanisms, more con-
cretely, w.r.tr metarules; and second, the deletion of redundancy in the sets of
temporal constrains by taking into account transitive dependencies and other
aspects.

Moreover, we are working on the adaptation of the proposed method SO that
it can be applied to verify agents whose knowledge domain is expressed in a wide
known ontology like OWL2.

http://www.w3.org/TR/owl-features/

Bibliography

[l] de Kleer, J.: An assumption based TMS. Artificial Intelligence 28 (1986)

[2] Rousset, M.: On the consistency of knowledge bases: The COVADIS system,
Proceedings ECAI-88, Munich, Alemania (1988) pp. 79-84.

[3] Ginsberg, A.: Knowledgebase reduction: A new approach to checking
knowledge bases for inconsistency and redundancy, Proceedings of the
AAAI-88 (1988) pp. 585-589.

[4] de Antonio, A.: Sistema para la verificacih estructural y detecci6n de
inconsistencias en bases de conocimientos. Final year project, Facultad de
Inform&tica, W M (1990)

[5] Meseguer, P.: Incremental verification of rule-based expert systems, Pro-
ceedings of the loth. European Conference on AI (ECAI’92) (1992) pp.
840-844.

[6] Dahl, M., Williamson, K.: A verification strategy for long-term maintenance
of large rule-based systems, Workshop Notes of the AAAI92 Workshop on
Verification and Validation of expert Systems (1992) pp. 6671.

[7] Ayel, M.: Protocols for consistency checking in expert system howledge
bases, Proceedings of the European Conference on Artificial Intelligence
(ECAI’88) (1988) pp. 220-225.

[8] Ayel, M., Lament, J.P.: Validation, Verification and Test of Knowledge-
Based Systems: SACCO-SYCOJET: Two DiEerent Ways of Verifying
Knowledged-Based Systems. John Wiley publishers (1991)

[9] de Antonio, A., Cardeiiosa, J., Martinez, L.: GKR: A generic model of
knowledge representation. Volume 11, Student Abstracts., Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI94) (1994) pp.
1438.

[lo] d’hverno, M., Kinny, D., Luck, M.: Interaction protocols in agentis, Third
International Conference on Multi-Agent Systems (ICMAS98) (1998) 261-
268

[ll] Antoniou, G.: Veriiication and correctness issues for nonmonotonic howl-
edge bases. International Journal of Intelligent Systems 12 (1997) 725-738

[12] Kroger, F.: Temporal Logic of Programs. Springer-Verlag (1987)
1131 M r e z , J., de Antonio, A.: Knowledge base semantic verification based on

contexts propagation, Notes of the AAAI-01 Symposium on Model-based
Validation of Intelligence (2001)

127-162

